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- SUMMARY

This final technical--ieport describes two numerical models of small-scale seafloor
topography, SM1-P, corresponding to a 100 km x 100 km area of the east central Pacific
Ocean near the Cocos-Pacific spreading center of the East Pacific Rise and SMI-A,
corresponding to a 100 km x 100 km area of the North Atlantic Ocean west of the Mid-
Atlantic Ridge. The models comprise both a deterministic component, taken from the
DBDB5 digital bathymetric data base, and a stochastic component, obtained as a single
realization of a five-parameter Gaussian random field describing the abyssal-hill
topography. The parameters assumed in computing the stochastic realizations have been
estimated from Sea Beam swaths passing through or near the study areas. SMI-P and
SM1-A are specified by a nested series of 1000 x 1000 point data files, which are
available from the authors on 9-track magnetic tape. The nesting scheme employs a
factor-of-ten reduction in scale on grids with knot spacings ranging from 100 m to 0.1 m.
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1. INTRODUCTION

A principal scientific goal of the ONR Acoustic Reverberation SRP is to understand
acoustic scattering from the deep-ocean bottom. A crucial component of this work is the

development of realistic morphological models that can be used in numerical modeling of

acoustic interactions with the seafloor. This report describes the first release of a set of

models that will be generated for this purpose.

The models in this first release represent seafloor topography over a spectrum of

horizontal scales ranging from 100 km to 0.1 m. The two areas selected for this study are a

100 km x 100 km region of the east central Pacific Ocean, near the Cocos-Pacific spreading

center of the East Pacific Rise, and 100 km x 100 km area of the North Atlantic Ocean,

west of the Mid-Atlantic Ridge. The numerical models of these regions, designated

Seafloor Morphology I-Pacific (SM1-P) and Seafloor Morphology 1-Atlantic (SMI-A),

respectively, comprise both a deterministic component and a stochastic component. The

deterministic component is taken from the DBDB5 digital bathymetric data base, which has

a nominal horizontal resolution of 5' x 5'.
The stochastic component is obtained as a single (arbitrary) realization of the five-

parameter Gaussian-random-field model developed by Goff and Jordan [1988, 1989a] to
represent abyssal-hill topography. The parameters assumed in computing the stochastic

realizations have been estimated by applying the inversion procedures of Goff and Jordan

[1988] to Sea Beam swaths passing through or near the study areas. In Section 2, we

review the stochastic model and describe some of its mathematical properties. Numerical

tests of the inversion algorithm are discussed by Goff and Jordan [1989b], and

comparisons between synthetic realizations of the Gaussian model and actual Sea Beam and

SeaMARC II data sets are presented by Goff and Jordan [1988] and Goff et al. [1990].
The 4nta-synthetic comparisons indicate that the model is generally successful at matching

the low-order characteristics of abyssal hill terrain. Improvements in the model are

anticipated, primarily through improved parameterizations of the two-point correlation
function and the addition of higher-order terms in the stochastic characterization [Goff and

Jordan, 1990]. However, it is hoped that the preliminary Gaussian models presented here
will prove useful in testing numerical schemes for modeling acoustic reverberations

generated by small-scale seafloor topography.

The complete representation of topography within a 104-km2 area at the finest scale of
resolution utilized our calculations, 0.1 m, requires the specification of 1012 grid points.
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Data sets of this magnitude are too large to be feasibly handled with current computing

technology. Therefore, the models are specified by a nested series of 1000 x 1000 point

data files. The nesting scheme, described in Section 3, employs a factor-of-ten reduction in

scale between each of four levels:

Level Area Grid Spacing
(km x km) (M)

00 x 100 100

1 lox 10 10

2 lxl 1
3 0.1 x 0.1 0.1

Data files containing the SM1-P and SM1-A models, together with software for

manipulating these files, are available from the authors on 9-track magnetic tape. Technical

information regarding the data structure and software is listed in Section 4.

2. DETERMINISTIC AND STOCHASTIC COMPONENTS OF SEAFLOOR TOPOGRAPHY

We let z(x) be the height of the seafloor above some mean reference level at a position

x, and we suppose we have a map of this topography, denoted zM(x). Because the map is

based on limited data, it may accurately represent age-dependent subsidence, thermal

swells, major fracture zones, oceanic plateaus, and other "large-scale" features, but does

not contain topographic variations with horizontal dimensions below some "cutoff scale"

xM. We assume the map can be approximated as the output of some filter M[z(x)]. To the

extent that the mapping cutoff is sharp - i.e., M passes features larger than xM with no

distortion but completely annihilates features smaller thanxM - this filter is a projection

operator: ZM(X) = Mf[zM(x)]. An example of ZM(X), the one used in this report, is the

DBDB5 bathymetry, which is specified on a 5' x 5' grid (9.25-km knot spacing) and has

an effective cutoff of xM = 50 km.

. We seek to supplement this deterministic description of the seafloor with some

stochastic representation of the small-scale features. Let h(x) be a stochastic process, or

random field, which represents the statistics of the topographic variation at all length scales.

We define hM(x) = Mt[h(x)] and take as our model of seafloor torography
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!(x) = ZM(x) + h(x) - hM(x) (1)

In other words, we replace the stochastic components of the field with scale lengths greater

than the cutoff XM by the known ("deterministic") components. If X is a projection

operator, then applying it to this model recovers the map: fl17(x)1 = ZM(X).

3. GAUSsIAN MODEL OF SMALL-SCALE TOPOGRAPHY

The stochastic model used in this report is a stationary (spatially homogeneous)

Gaussian random field with zero mean and a 2-point moment (covariance) function,

Cm(x) = (h(x,) h(x + x) (2)

where (-) is the expected value and x is the lag vector. Under the Gaussian assumption, all

higher moments of the random field can be expressed in terms of (2). The power spectrum

of the Gaussian field is the Fourier transform of this covariance function [Bracewell,

1978], and its phase spectrum is a random process uniformly distributed on (0,2n]

[Priestly, 1981].
Although the distribution of seafloor depths often fails the Kolmogorov-Smimov test

for acceptance of the Gaussian hypothesis [Gilbert and Malinverno, 19881, approximating

small-scale topography by a Gaussian field provides a simple and mathematically

convenient description of its most important features [Bell, 1975; Goff and Jordan, 1988].

These include its RMS height variation, the orientation and characteristic wavenumbers of

its "tectonic grain," and the variation of roughness with spatial scale. Moreover, a

Gaussian description is the basis for the study of higher-order statistical properties, which

can be expressed as perturbations from a Gaussian form [Goff and Jordan, 19901.

Covariance model. The mathematical properties of the two-dimensional Gaussian process

employed in this study are detailed in Goff and Jordan [1988, 1989a]. To represent small-

scale abyssal-hill topography, we have proposed a covariance function of the form
= 2

C,(x) = H G,(r(x)) / G,(O) (3)

where H is the RMS height and G, is defined by
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G (r) = rVKvr), 0 < r < oo, v e [0,1] (4)

KV is the modified Bessel function of the second kind of order v. GV is plotted for three

values of v in Figure 1 (top panel). The order parameter v controls the behavior of Gv(r) at

the origin; its slope at r = 0 is zero for v = 1 and infinite for v = 0. GI (r) is simply an

exponential function.

Azimuthal variation is expressed by the dimensionless ellipsoidal (Riemannian) norm

V12
r(x) = [ XT Q x] = q x' + 2qxx 2 + q22A2 (5)

The scale matrix, Q, can be expressed in terms of its ordered eigenvalues k, 2 > k,2 and its

normalized eigenvectors 6n and e,,

2 T 2 ,TQ = Vnenen + Vs eses  (6)

Q specifies the "outer scale" of the topography through the characteristic wavenumbers kn
and ks, yielding an aspect ratio a = kr/ks for the lineation or "tectonic grain" of the abyssal

hills. The orientation of this anisotropy is given by the directions of the principal axes.

Since the covariance decays least rapidly along the e. axis, the structure tends to be lineated

in this direction.

Thus, five parameters determine the stochastic model: the RMS height H, the order

parameter v, the characteristic wavenumbers kn and ks, and the azimuth Cs of es in the

geographic reference frame. The scale parameters define an aspect ratio a = kn/k s.

Power spectrum. The power spectrum obtained from Fourier transforming (3) is

Ph(k) = 4vH 2 IQI [u(k) + 1]<V+ 1) (7)

where u is the dimensionless norm of k defined in terms of its modulus k and azimuth C" by

u(x) = [kT Q k ]= x (k/k) 2 cos(C-C) + (k/k,,)2 sin 2(C-C) (8)

The one-dimensional forms of the power spectrum at three values of v are shown in Figure

1 (bottom panel). Equation (7) is a power-law spectrum with a comer wavenumber kn in
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the 6n direction and ks in the 6s direction. At high wavenumbers the power spectrum

decays at a rate k-(+'); at low wavenumbers, it is flat.

Hausdorff dimension and self-affine scaling. The Hausdorff (fractal) dimension D of a

topographic surface can be related to the asymptotic properties of the covariance function at

small lag [Adler, 1981]. Goff and Jordan [1988] show that the Hausdorff dimension

associated with (3) is

D = 3 - v (9)

Decreasing the parameter v increases the roughness, with the limiting cases of unity and

zero corresponding to a Euclidean random field with continuous derivative (D = 2) and one
which is "space-filling" (D = 3), respectively.

The Hausdorff dimension describes a self-affine scaling relationship at wavenumbers
much larger than kn [Goff and Jordan, 1988, 1989a]. A topographic surface h(x) is self-

affine if there exists an a E [0,1] such that, for all R > 0 the topographic difference

function d(x - x0) = h(x) - h(x 0 ) is identical in distribution to R'ad(Rx - Rx0 ). For the

covariance model (3), Goff and Jordan [1988] demonstrate that a = v. The self-affine

property allows the topography at high wavenumber to be simply interpolated to smaller

scales. However, the validity of this interpolation at scales below the resolution of

bathymetric mapping devices is hypothetical; some work suggests that the spectral
exponent [Fox and Hayes, 1985] and aspect ratio [Goff and Jordan, 1990] are scale-

variable. Small-scale stochastic interpolation using the covariance model (3), including the
high-resolution synthetic realizations accompanying this technical report, require testing in

the natural-laboratory settings that will be investigated during the SRP.

Characteristic scales. Unlike spectral models usually associated with fractals [e.g.

Mandelbrot, 1983], a random fie1d whose second-order properties are described by (3) or

(7) does not have infinite power at zero wavenumber. Rather, the low-wavenumber part of

the spectrum is governed by a characteristic length, or outer scale. As discussed in Goff

and Jordan [1988], the characteristic length in the 0 direction, ,, can be defined in terms

of the second moment of the covariance function in the 0 direction, which yields

0 2,42_(v+ 12)' T e T 112

A= ko ,k a e 8 (10)
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where kv is the scale parameter in the 0 direction. A,, is interpreted as the characteristic
abyssal-hill width, and A, as the characteristic abyssal-hill length.

Slope statistics. The characterization of topographic slopes is critical to modeling acoustic
reverberation, and it has important geological applications [e.g., Smith and Shaw, 1989].
We therefore give some simple mathematical properties of the slope distributions derived
from our Gaussian model. Because the covariance function (3) is discontinuous at the
origin for v < 1, the random field has fractal character, and its spatial derivatives do not
exist. Therefore, it is necessary to measure slopes in terms of topography differences over
finite intervals. The slope function is defined as

s(x ,.) = h(x, + 41) - h(x,) (11)

where I I is the slope interval. If the probability density function for h is stationary and
normally distributed with known second moment, as in (3), then the probability density
function for s will also be stationary and normally distributed with zero mean and variance
given by

(s2(x,)) 2(CM(O) - CM()) (12)Ii2

We can also calculate the slope autocovariance:

C"x, r ) = (s(x, 1 ) s(x 1+x,+ 1+)) =

(13)
CM(x + 4) - cm(tl - x) - CM(x + 41 + t) + CM(x)

and the slope-height covariance

C ( 1 ) = Chh(41) - C,40) (14)
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In one dimension, the case v = 0.5 (exponential covariance) yields a Markov process

(the Ornstein-Uhlenbeck process) [Feller, 1971]. The Markov property can be

demonstrated by considering the 1-D form of (13) for k04 v 1:

I 2H (k0 (4 -
= X4,4 41(4 ) (15)

L0, 1:X

Thus, when slope intervals do not overlap (41 < x), the slopes are uncorrelated.

Nearby slopes are positively correlated where v > 0.5, and negatively correlated where v <

0.5.

4. ALGORITHM FOR GENERATING SYNTHETIC TOPOGRAPHY ON NESTED GRIDS

The algorithm for generating nested synthetics involves two basic steps. The first is to

generate a master realization from the desired covariance function on a large-scale grid

(here, 100 km x 100 kIn). The second is to take a compact rectangular subset of the master

realization and use it as a constraint in generating a synthetic realization with finer

resolution. The latter involves a procedure for "molding" an arbitrary topographic array to

values specified on a coarser grid. The nested synthetic is then regarded as a master

realization, and the nesting is iterated to produce realizations on finer grids.

To generate the 100 km x 100 km master realization, we compute the Fourier spectrum

on a regularly spaced wavenumber grid by multiplying the square root of the power

spectrum (7) by a phase factor exp(io), where 0 is a randon- number uniformly distributed

on the interval [0, 2n) [Priestly, 1981]. The space domain image is then obtained from a

two-dimensional, fast Fourier transform. (In all transforms, edge effects associated with

aliasing are minimized by computing the realization on a grid 20% larger than required and

stripping off the edges.) An example of such a realization, displayed as a color-contoured,

grey-shaded relief plot, is shown in the upper left panel of Figure 2.

The algorithm for generating a nested synthetic realization includes the following steps:
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1. A rectangular (m x n array) compact subset of the master realization is selected for
nesting. As an example, we employ the 10 km x 10 km square outlined in white in
the first panel of Figure 2. For this subset, m = n = 100.

2. The subset is interpolated using a bilinear (or bicubic) algorithm [Press et. al.,
1986] at the resolution that will be required for stochastic interpolation. This results
in an em x en array, where e is the densification factor. The second panel of Figure
2 shows the bilinear interpolation of the box shown in the first panel with e = 10,
which results in another 1000 x 1000 array.

3. A stochastic realization is generated from the covariance model at the resolution and
scale required for the stochastic interpolation. The bilinear interpolation of the
subset is Fourier transformed, obtaining a spectrum with discrete wavenumbers
(kxi,kyj) indexed -em/2 < i < em/2 and -en/2 < j < en/2. Phases of the
wavenumbers indexed -m/2 < i < m/2 and -n/2 < j < n/2, the portion of the
spectrum sampled by the master realization, are then input as the phases for the
identically indexed wavenumbers of the spectrum of the stochastic realization. The
Fourier transform of this spectrum produces a realization whose low wavenumber
characteristics are similar to those of the interpolated subset (compare the second
and third panels of Figure 2).

4. The final step involves molding the finer-scale realization generated in step 3 to the
master realization generated in step 1. The former is first sampled on the coarse
grid, resulting in an m x n array. This array is then interpolated using the same
algorithm used in step 2, yielding a second em x en array. The difference between
this interpolated array and that obtained in step 2 is subtracted from the finer-scale
realization, thus constraining it to coincide with the master on the coarser grid. The
fourth panel in Figure 2 shows the final product.

The effect of the molding algorithm is to replace the smoother features of the

unconstrained stochastic realization with those obtained from the master without

significantly altering the power spectrum.

4. TECHNICAL SPECIFICATIONS FOR MODELS SM 1-P AND SM1-A

Stochastic model. The following model parameters were used to generate the two series of

stochastic realizations:
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Model H CS An s D
(m) (deg) (km) (km)

SM1-P 50 170 2.3 19 2.5

SM1-A 225 10 5.9 22 2.2

These parameters are derived from the inversion of Sea Beam swaths using the technique

of Goff and Jordan [1988]. Model SM1-P was obtained from Sea Beam data taken near

the East Pacific Rise between the Orozco and Siquieros fracture zones (see Goff et ai.

[1990]), and the Atlantic series from Sea Beam data taken just south of the Kane fracture

zone.

Two sets of DBDB5 bathymetry, gridded at 10 km spacing and covering 100 km on a

side, are also provided in the release. The Pacific data file is called PDBDB5, and the
Atlantic data file ADBDB5. The FORTRAN code also provided in the release, merge.f,

uses the molding algorithm to conform the largest scale synthetic realizations to the

constraints of the DBDB5 sections. The two DBDB5 data sets and the superposition of
these data sets with the (molded) stochastic realizations are shown in Figure 3.

Nesting geometry. The nesting geometry is shown in Figure 4. The first master realization

array contains 1000 x 1000 points covering an area of 100 km x 100 km. Five subsets
whose lower-left corner coordinates are shown in Figure 4, each a 100 x 100 array, are

chosen for nesting. The densification factor is e = 10 so that the nested realizations will be

1000 x 1000 arrays covering 10 km on each side. The cente nested realization is then

chosen as the master realization for the next round of nesting. This procedure is iterated 3
times, yielding one master realization with 100-km sides (100-m grid spacing), 5

realizations with 10-km sides (10-m grid spacing), 5 realizations with 1-km sides (1-m grid

spacing) and 5 realizations with 100-m sides (0.1-m grid spacing).

The realizations are designated by their locations (A = Atlantic, P = Pacific), iteration

level (0-3), and subset number (1-5). The convention for naming the realizations are

shown in Figure 4. P01 is the master realization for the Pacific series (SM1-P). The first

set of nested realizations in this series are Pl1, P12, P13, P14, and P15. P11 is then

chosen as the master realization with nested realizations P21 through P25. And finally

(though not shown in Figure 4) P21 is used to generate realizations P31 through P35.
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Figures 5 and 6 show the master realization and the five nested realizations of the first
iteration level for SM1-P and SM1-A, respectively. The box outlines in the master
realization (middle-top panel) are the subsets chosen for nesting. Figure 4 can be used to
match the appropriate subset to the surrounding nested realizations.

Figures 7 and 8 show the number 1 subset of each iteration of the SM1-P and SM1-A,
respectively. The character of the largest scale plots (P01 and A01) are dominated by the
scale lengths A., and A, i.e. by the abyssal hills. The range of scales exhibited by these
plots lie predominantly within the white portion of the spectrum. Features with scale
lengths larger than the characteristic length are not significantly greater in amplitude and so

do not stand out. The range of scales in P11 and All are an order of magnitude smaller

than those in P01 and A01, and they lie close to the comer region of the spectrum. While

the characteristic length scales, on the order of the size of the plot, are still apparent, we
also notice the rich texture at smaller scales. The scales represented in P21 and P31 (Figure

7), and A21 and A31 (Figure 8), are much smaller than the characteristic lengths; i.e., they

contain features described by the sloping (fractal) portion of the power spectrum. The
color scale and vertical exaggeration (which controls shading) have both been rescaled

according to the self-affine scaling relationship discussed in Section 2. We therefore expect

that the P21 and A21 plots and the P31 and A31 plots should be statistically similar. Visual

inspection confirms this.

Aliasing. If the spectrum of a spatially unlimited topographic field h(x) is sampled on and

N x N grid of spacing Ak, its space-domain image will be an aliased version of h(x). The

covariance function of the aliased field will be the sum of the covariance function CM(x)
with copies centered on a grid with spacing NAx [Bracewell, 1978]. When N Ax is large

compared to the characteristic length As, such as in the case of the master realization of each

series, aliasing will not be significant, since the amplitude of the copies is small where

CM(x) is large. However, when NAx is small compared to the characteristic length, such

as in the second-level and third-level nestings of each series, the spacing between copies is
small enough that the aliased covariance function will be significantly different from the

model.

Fortunately, the effect of aliasing is to add power to the field only at the largest scales.

The combined contribution of nearby diametrically placed copies will be approximately a

constant. Adding a constant to the covariance simply adds a constant to the topography,

which is removed in the molding procedure.
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File structure. Each synthetic realization is a written in a UNIX direct access FORTRAN

binary data file with a record length of 4 bytes. Each record is a single REAL*4 number

stored in IEEE format. The first eight numbers constitute the header. These numbers

contain the following information:

1. Minimum x value of the realization array (consistent with the coordinates of the
largest master array realization).

2. Maximum x value.

3. Minimum y value.

4. Maximum y value.

5. Number of elements in the x direction.

6. Number of elements in the y direction.

7. First four digits of the seed number used to initialize the pseudo-random number
generator used to compute the phase values.

8. Last four digits of the seed number.

Following the header the realization values are given. The realization arrays are stored in

columns (y values; i.e. where (ij) is the indexing of the (xiYj) coordinates, the first 1000

numbers are (i = 1,j = 1) through (i = 1,j = 1000), the second 1000 are (i = 2,j = 1)

through (i = 2,j = 1000), etc.

The gridded DBDB5 files are written in ASCII, but are otherwise identical in file

structure to the realization files, with the one exception that the 7th and 8th header values

contain the latitude and longitude of the lower-left comer of the data set.

File storage. All files are written on a 6250 bpi 9-track tape using the UNIX tar utility.

There are 16 files in each series. Each file is approximately 4 Mb in size. The total data

size is approximately 128 Mb. Also included are the ASCII DBDB5 data sets and the

FORTRAN program and subroutines for reading the files and for nesting one topographic

array into a coarser array.
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7. FIGURES

Figure 1. Functional form of the model covariance function Gv(r), plotted for values of
v = 0, 1/2, and 1 (top panel), and their normalized Fourier transforms plotted on a log-log
scale (bottom panel).

Figure 2. Example of the nesting algorithm described in Section 3 of the text. Each
panel is a color-contoured, grey-shaded relief plot of seafloor topography. First panel
(upper left) is the unconstrained master realization, generated from the parameters for SM1-
P. This realization array contains 1000 x 1000 elements, and is 100 km on each side. The
outlined box in the middle of this panel is the subset chosen for nesting. This box is 100 x
100 elements (10 km x 10 kin). The second panel (upper right) is the bilinear interpolation
of the subset. This panel contains 1000 x 1000 elements and has a dimension of 10 km x
10 kIn. The third panel (bottom left) is another stochastic realization generated over the
finer-scale grid of the second panel. The phases from the lowest 50 wavenumbers from the
Fourier spectrum of the second panel were used as phases for the identical wavenumbers in
generating the third panel. The fourth panel (lower right) was then generated by molding
(see text) the second panel to the constraints provided by the master.

Figure 3. Color-contoured, grey-shaded plots of the Pacific and Atlantic DBDB5
sections provided in the release and the superposition of these data sets with the (molded)
stochastic realizations (see text). These topographic models are designated SMI-P and
SM l-A, respectively Latitude and longitudes represent the location of the lower-left comer
of each DBDB5 section.

Figure 4. Nesting geometry and file naming conventions for the SM1-P series. The
files are named by their location (in this example, P = Pacific), their iteration number (0, 1,
2, or 3), and their subset number (1, 2, 3, 4, and 5). The master realization for the SMI-P

is P01. It is a 1000 x 1000 array with 100-kn sides. Five subset arrays, with lower-left
coordinates shown, 100 x 100 elements, and 10 km sides, are chosen for nested
realizations P11 through P15. The densification factor e equals 10, so that nesting
generates 1000 x 1000 arrays with 10-km sides. The center nested realization, P1 1 is
chosen as the next master realization and the process is iterated to produce nested
realizations P21 through P25. In the last step, P21 is used to generate P31 through P35.
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Figure 5. Color-contoured, grey-shaded plots of the master synthetic realization and

nested realizations of the first iteration level for the Pacific series. Figure 4 matches subset

boxes in the master realization (P01) with the nested realizations (P 1 through P 15).

Figure 6. Color-contoured, grey-shaded plots of the master synthetic realization and
nested realizations of the first iteration level for the Atlantic series. Figure 4 matches subset

boxes in the master realization (AO1) with the nested realizations (All through A 15).

Figure 7. Color-contoured, grey-shaded plots of the nested realizations of the first

subset of each iteration of the SM I-P (Pacific) series. Box outline in the center of each plot

represents the subset chosen for nesting at the next iteration level (see Figure 4). Color

scale and vertical exaggeration of the P21 and P31 plot have been reset according to the

self-affine relationship discussed in Section 2.

Figure 8. Color-contoured, grey-shaded plots of the nested realizations of the first

subset of each iteration of the SM1-A (Atlantic) series. Box outline in the center of each

plot represents the subset chosen for nesting at the next iteration level (see Figure 4). Color

scale and vertical exaggeration (controling shading) of the A21 and A31 plot reset

according to the self-affine relationship discussed in Section 2.
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